
July 2001 www.stsc.hill.af.mil 9

How Much Code Inspection Is Enough?
Robert T. McCann

Lockheed Martin Management and Data Systems

Given code inspection effectiveness (defects found during inspection/defects found during inspection plus those found
during test) as a function of preparation rate (amount of code examined per labor hour), it is then possible to con-
struct a simple cost model that predicts testing labor hours as a function of code inspection preparation rate. This
paper develops that model and computes the optimum code inspection preparation rate to minimize total cost
(inspection + test). Existing program data (with significant caveats) have been used together with certain rough
approximations to show that Fagan-style code inspections obey a simple predictive cost model.

The purpose of this paper is not to
present actual performance data but

to demonstrate how such data can be ana-
lyzed in the context of a cost model
extending over multiple development
processes: code inspection, code inspec-
tion rework, test, test rework, and regres-
sion testing.

The purpose of the model is to
demonstrate how to reduce development
costs by managing the amount of time
spent preparing for software inspections.
All program data have been modified to
protect the proprietary nature of that data.
The conclusions and basic nature of the
model are unaffected by these modifica-
tions.

This model can be used to optimize
performance of future programs using a
similar Fagan-style [1, 2] code inspection
process with significant cost and schedule
savings as well as quality improvement –

in effect, better, faster, and cheaper. Such
performance improvements should result
in improvements in profitability, competi-
tiveness, and customer confidence in both
contract performance and product quality.

Further, the model is easily modified
to other work products and cost drivers,
e.g., design complexity. Given that code
inspection may not be particularly effec-
tive in finding design and requirements
defects, it may make sense to extend the
model to include more development
processes, such as requirements develop-
ment and requirements inspection, design
development and design inspection, defect
repair and associated inspection, etc.

Inspection, Test, and
Accounting Processes
To perform this kind of analysis, it is nec-
essary for a project to have defined, con-
sistently executed processes for code

inspection, code inspection rework, test-
ing, and testing rework that collect and
retain sufficient data. It is especially
important in deriving this model that the
inspection process was nearly statistically
stable with respect to inspection prepara-
tion rate (lines of code reviewed per labor
hour). Otherwise, the statistical fits would
have little predictive value. The cost data
are also assumed available and traceable to
these processes.

Inspection Effectiveness
It is not possible to know the true, exact
percentage of code defects found by code
inspections until all defects have been dis-
covered; furthermore that is not likely ever
fully to happen. However, if it is assumed
that a significant fraction of major code
defects found in testing could have been
found in code inspection, then there is
value in studying the code inspection
effectiveness.

This is the ratio of major code inspec-
tion defects1 divided by the sum of major
code inspection defects plus the major
code defects found by testing. The code
inspection effectiveness ratio has the desir-
able property of ranging from zero to one
even though the relationship between
major inspection defects and test defects is
many-to-many rather than one-to-one.
The model has the further benefit of
quantifying how inspection preparation
regulates testing costs.

When code inspection effectiveness is
averaged by computer software configura-
tion item (CSCI2), it is possible to develop
a correlation between code inspection
preparation rate and code inspection effec-
tiveness. The correlation is well fit by a
straight line with a y-intercept of 1.0 (see
Figure 1). The F-test [3] shows a confi-
dence level in excess of 99 percent with the
linear fit accounting for more than 90 per-

Figure 1 : Least Squares Fit of Inspection Effectiveness

cent of the variation in the data. The F-
test is a statistical test to verify that the
function used to fit the data did not do so
by accident.

Please note, however, that the fit func-
tion does not apply for very small prepara-
tion rates; at zero preparation rate, the
preparation would never end. It is also not
wise to extrapolate the fit function too far
beyond the data on the right; generating a
negative effectiveness is a clear indication
of going too far.

The following variations to the data
were performed and had only minor
effects on the results (the slope changed by
up to 10 percent, and the goodness-of-fit
parameters changed slightly):
• Restriction of inspection defects to

major defects [4] rather than all defects
found.

• Removing any one of the data points.
• Use of three separate selection criteria

on the test defects:
• Total test defects.
• Code-only test defects, including gen-

erated code.
• Code-only test defects, excluding gen-

erated code.
In all of these cases, the effectiveness is

well fit by a straight line that achieves 100
percent at zero preparation rate and
declines by a constant amount for every
100 lines of code per labor hour of inspec-
tion preparation review (see Figure 1 on
page 9).

Cost Model
The cost model should include all major
costs that are affected by the inspection
preparation rate. At the top level, this cost
model includes the costs associated with
just two development processes:
1. Code inspections with inspection

rework.
2. Testing with test rework and regression

testing.
A more detailed analysis, including

other code development processes or
including the effect of code complexity on
cost could not be supported due to
absence of necessary data in the program
databases. Code complexity, both algo-
rithmic complexity and interface complex-
ity, would be expected to affect inspection
effectiveness as well as inspection rework
labor hours and test rework labor hours.
These were excluded from this model due

to the absence of appropriate supporting
data.

In this model, total cost is the sum of
the following items:
• Code inspection preparation labor.
• Code inspection meeting labor.
• Code inspection rework labor.
• The labor for running the full test suite

once.
• Testing rework labor.
• Regression testing labor.

In deriving the cost function, the fol-

lowing statements are assumed to be

approximately true:
• The inspection preparation labor is pro-

portional to the amount of code being
reviewed.

• The inspection meeting labor and the
inspection rework labor are propor-
tional to the number of major defects
found in the inspections.

• The test rework labor and the regres-
sion test labor are proportional to the
number of major defects found during
testing.

• A significant number of the major code
defects found by testing could have
been found earlier in code inspections.

Using these assumptions, the total
excess cost due to discovered defects can
be expressed as follows:

Te = C + S*Wri*I + S*D/R + S*I*

(-m)*(Tr*Et - Wri)*R

See the Cost Function Derivation sidebar
for a more detailed derivation of this cost

function and for variable and terms defini-
tions.

Cost Optimization
The optimum code inspection preparation
rate is obtained by finding the point at
which the cost function has a minimum.
A minimum is found by setting the first
derivative of the total cost with respect to
code inspection preparation rate equal to
zero, solving for code inspection prepara-
tion rate, and verifying that the point is a
minimum and not a maximum or an
inflection point:

I*S*(-m)*(Tr*Et - Wri) – D*S/R2 = 0

The result is the following formula for
the optimum preparation rate:

R* = SQRT{D/[I*(-m)*(Tr*Et - Wri)]}

For demonstration purposes, the follow-
ing values are used:
D = 4
Et = 1.0 approximately (a very high

quality requirement: man rated or
species rated)

I = 0.040 defects/SLOC

m = -0.00075 (SLOC/labor hour)-1

S = 1,000,000 SLOC
Tr = 20 labor hours/defect

Wri = 4 labor hours/defect

Substituting this demonstration data

yields the following optimum code inspec-

tion preparation rate:

R* = 91.29 SLOC/labor hour

10 CROSSTALK The Journal of Defense Software Engineering July 2001

Figure 2: Murphy’s Tongue - Excess Labor as a Function of Inspection Preparation Rate

Testing & Configuration Management

July 2001 www.stsc.hill.af.mil 11

How Much Code Inspection Is Enough?

The relative cost in excess of the cost at the
optimum rate is given by evaluating the
difference in the total cost at a given rate
minus the cost at the optimum rate:

TM = S*D*(1/R – 1/ R*) + S*I*

(-m)*(Tr*Et - Wri)*(R - R*)

Since this curve is shaped like a parabola
that opens upward (see Figure 2), there
must be a unique preparation rate R* that
minimizes the total cost. Figure 2 is
named in memory of Murphy’s Law
because any variation from the optimum,
no matter how well intentioned, will
increase development costs.

The Cost of Variation
It is not enough to know the optimum
preparation rate. No human process is
without variation, so it is necessary to
know the cost of variation. Whether a
code inspection is run slightly too fast or
slightly too slow, the cost is higher than
the minimum cost. This idea is summa-
rized in the following definition: “World
class quality is on target with minimum
variance.” [5]

The cost of variation is approximately
parabolic with respect to deviations from
the optimum preparation rate. Therefore
the Taguchi cost-of-variance formula for
this model is the averaged second deriva-
tive term in a Taylor expansion of the cost
function [6],

Tv = (D*S/ R*3)*<(R - R*)2>

where the angle brackets indicate com-
puting the average over the whole dataset.
Substituting example data yields the fol-
lowing:

Tv = 5.26*<(R - R*)2> labor hours
This is an approximation to the exact cost
behavior for this model, but it shows the
salient point that variation itself has a cost
that may be worth minimizing.

Conclusions
If a program collects the right data from
the inspection, test, and cost-accounting
processes, performance and cost analysis
can result in the ability to predict pro-
gram cost and quality performance in
terms of one inspection process control,
inspection preparation rate. With the
right data, a second driver could be added
to the model, e.g., code complexity. This
driver would be expected to affect inspec-

Cost Function Derivation

Code inspection labor consists of preparation labor, inspection meeting labor, and
inspection defect rework labor. Preparation labor is just size divided by prepara-

tion rate: S/R. The inspection meeting labor is linearly related to the preparation labor
because the meeting time will be driven by the number of candidate defects to be dis-
cussed and recorded. The sum of preparation labor and meeting labor is C + D*S/R,
where C and D are the linear regression coefficients. Inspection rework is driven by
the number of defects found, and that is the discoverable defect insertion rate “I”
times the amount of code inspected “S” times the inspection effectiveness “(1 + m*R)”
times the labor to fix an average defect “Wri.”

Testing labor includes the cost of testing perfect code “To*S” (running through
the whole test suite once), rework driven labor, and regression testing. Both regression
testing and test rework will be driven by the number of defects detected during test-
ing: the number escaping the inspections “I*S*(-m)*R” times the test effectiveness
“Et” times the labor for fixing and regression testing an average defect “Tr.”
Symbolically this can be expressed as follows:

Tc = To*S + C + D*S/R + Wri*I*S*(1 + m*R) + Tr*Et*I*S*(-m)*R
or

Te = Tc - To*S = C + S*Wri*I + S*D/R + S*I*(-m)*(Tr*Et - Wri)*R

where:

C = Y-intercept of empirical fit of total inspection labor (preparation plus meeting).

D = Slope of empirical fit of total inspection labor vs. preparation rate.

Et = Test effectiveness (defects found in test/defects found in test plus those found after test completion

excluding all defects that cannot be found by testing, e.g., requirements defects).

I = Discoverable code defect rate = code inspection defect rate + test defect rate.

m = Slope of code inspection effectiveness regression line.

R = Code inspection preparation rate (SLOC/labor hour).

S = Total SLOC inspected.

SLOC = Non-comment, non-blank, physical lines of code. Any consistently used size measure will work,

e.g., executable statements, function points, etc.

To = Labor for testing one line of perfect code (regression testing not needed).

Tc = Total cost (labor hours).

Te = Total excess cost due to discovered defects.

Tr = Labor per defect to do test rework and regression testing.

Wri = Labor hours to rework a code inspection defect.

C+D*S/R = Labor for inspection preparation plus the inspection metting.

I*S = Defects present at code inspection.

(1+m*R) = Code inspection effectiveness.

I*S*(-m)*R = Defects missed by the code inspection that escape into test.

I*S(1+m*R) = Defects found by the code inspection.

S/R = Inspection preparation labor.

T0*S = Total labor for testing perfect code (registration testing not needed).

Tr*Et*I*S*(-m)*R = Labor to do test rework.

Wri*I*S*(1+m*R) = Labor for reworking defects found during the inspection.

tion effectiveness as well as inspection
rework labor hours and test rework labor
hours.

Realistically, one ought to be able to
achieve 90 percent code inspection effec-
tiveness by preparing at a cost optimizing
rate of about 100 SLOC/labor hour with-
out any other change in the code inspec-
tion process. To achieve further improve-
ment, say 99 percent effectiveness with-
out increasing code inspection cost, it
would be necessary to improve the code
inspection process. There are several ways
to do this:
• Use checklists that are improved each

time they are used.
• Train each developer to develop and to

use an individualized checklist.
• Use Watts Humphrey’s Team Software

Process/Personal Software Process that
does both of the above and more [7].

In the example using the optimal
91.29 SLOC/labor hour preparation rate
rather than a quick and dirty 300
SLOC/labor hour, there is a savings of
nearly 70,000 labor hours/MSLOC ($
millions/MSLOC at any realistic labor
rate). If the code inspection process could
be modified to 99 percent efficiency
without increasing code inspection costs,
then the savings would potentially exceed
107,000 labor hours/MSLOC. Such
potential improvement makes clear the
value in performing code inspections at a
deliberate pace and reliably recording cer-
tain key information to enable optimiza-
tion of program performance. With this
kind of analysis and with reliably record-
ed data, simultaneously working better,
faster, and cheaper really is possible!

In conclusion, to get the best value
from an inspection, it is more cost effec-
tive to prepare for that inspection as if
preparing for a final exam in college
rather than reading the material as if read-
ing a light novel for entertainment.
However, preparation thoroughness con-
sistent with a Ph.D. thesis defense may
not be appropriate unless there is a clear
business case for exceptional quality, e.g.,
man-rated or better.u

Acknowledgments
The author would like to thank John
Gibson of Lockheed Martin Mission
Systems and Pat Dorazio, Earl Pape, and

Bernie Pindell of Lockheed Martin
Management& Data Systems, Gaithersburg,
Md., for reading this report and making
numerous helpful suggestions. Thanks are
also due to Dr. Abol Ardalan of The
University of Maryland University College
for teaching me the value of cost models and
how they are built, and to Dr. Gary
Kaskowitz of The University of Maryland
University College for teaching me basic
business statistics.

References
1. Fagan, Michael G., Design and Code

Inspections to Reduce Errors in Program
Development, IBM Systems Journal, vol.
15, no. 3, 1976.

2. Fagan, Michael G, Advances in Software
Inspections, IEEE Transactions on
Software Engineering, vol. SE-12, no. 7,
July 1986.

3. Montgomery, Douglas C. and Runger,
George C., Applied Statistics and
Probability for Engineers, John Wiley &
Sons, Inc., NY, 1994, pp. 315-317, 493-
495, and 510-513. Also see the
Microsoft Excel-97, SR-2 online help for
the LINEST function, example 4, using
the F and R2 Statistics.

4. See note 1.
5. Wheeler, Donald J. and Chambers,

David S., Understanding Statistical Process
Control, 2nd Ed., SPC Press, Knoxville,
TN, 1992, pp. 141-147.

6. Ibid., pp. 143-147.
7. Humphrey, Watts S.; Lovelace, Mark;

and Hoppes, Ryan, Introduction to the
Team Software Process, Addison-Wesley
Publishing Co., 1999, ISBN:
020147719X.

Notes
1. The Lockheed Martin Management &

Data Systems definition of a major
defect is a defect that will cause a mal-
function or deviation from require-
ments or specifications, seriously vio-
lates policies or standards, indicates
missing function, or makes the system
unusable. The defect must be fixed
since it may cause some degree of proj-
ect failure, economic loss, poor cus-
tomer satisfaction, or contractual or
legal breach.

2. A computer software configuration item
is a large set of related functionality pro-
duced by one team of developers.

12 CROSSTALK The Journal of Defense Software Engineering July 2001

Testing & Configuration Management

“It’s hard enough to find an
error in your code when

you’re looking for it; it’s even
harder when you’ve assumed

your code is error-free.”
–Steve McConnell

“The most important single
aspect of software development
is to be clear about what you

are trying to build.”
–Bjarne Stroustroup

About the Author
BBoobb MMccCCaannnn is a staff sys-
tems engineer at Lockheed
Martin Management &
Data Systems in
Gaithersburg, Md. He has
nearly 20 years of experience

in computational physics and high perform-
ance computing, including nine years at
Princeton Plasma Physics Laboratory
working in the U.S. DOE-controlled
fusion program, as well as about 10 years
experience in design and development of
relational databases of various kinds.
McCann is currently a member of the
M&DS Metrics Process Steering
Committee and works on improving
software development processes, meth-
ods, and metrics. He has a bachelor’s
degree in physics with a concentration in
mathematics from Shippensburg
University; master’s degrees in physics
and computer science from University of
Maryland and Southwest Texas State
University, respectively; and is working
on a master’s degree in computer sys-
tems management/software develop-
ment management at the Univeristy of
Maryland University College.

Lockheed Martin Management
and Data Systems
700 North Frederick Avenue
Gaithersburg, MD 20879
Phone: (301) 240-4273
Fax: (301) 240-7190
E-mail: bob.mccann@lmco.com

